martes, 8 de agosto de 2023

El desarrollo de la escritura alfabética

 

El primer sistema de escritura alfabético se desarrolló en Fenicia (1) alrededor del siglo X a.C. (DeFrancis, 1989). El alfabeto fenicio tenía solo 22 letras, cada una de las cuales representaba un sonido (Olson, 1994). Esto hizo que el alfabeto fenicio fuera mucho más fácil de aprender que los sistemas de escritura anteriores, que a menudo usaban cientos o incluso miles de símbolos. Se cree que el alfabeto fenicio se inspiró en el sistema de escritura egipcio, ya que los fenicios eran un pueblo de comerciantes que viajaban por todo el Mediterráneo, y habrían estado expuestos al sistema de escritura egipcio en sus viajes. Es factible que los fenicios simplificaran el sistema de escritura egipcio para hacerlo más fácil de aprender y utilizar.

Alfabeto fenicio (De Luca)
El alfabeto fenicio fue adoptado por los griegos, quienes agregaron cinco letras para representar sonidos que no existían en el idioma fenicio (/φ/, /χ/, /ψ/, /ω/ y /ξ/). Esta adaptación del alfabeto fenicio resultó crucial en el desarrollo de la escritura y la comunicación en la antigua Grecia.

La inclusión de estas nuevas letras permitió a los griegos expresar una gama más amplia de sonidos y palabras en su idioma (Albright, 2004). En particular, estas adiciones fueron especialmente relevantes para el desarrollo de la filosofía y la literatura griega, al facilitar la transmisión de ideas complejas y destacadas (Cohen, 2000).

Además, las letras añadidas al alfabeto griego también influirían en otros sistemas de escritura, como el latino y el cirílico, que son utilizados ampliamente hoy en día. Mediante la introducción de nuevas letras para representar sonidos específicos, los griegos sentaron las bases para la alfabetización y el intercambio de conocimientos en sociedades posteriores: habían creado el principio alfabético, una letra para cada sonido y un sonido para cada letra.

Cuando se sigue la evolución del alfabeto griego al latino, llama la atención que las grafías no sean iguales. Esto se debe a que la adopción del sistema alfabético griego por parte de los romanos no fue directa, sino que se introdujo a través del alfabeto etrusco (Wachter, 2001). Etruria se encontraba situada al norte de Roma y fue integrada gradualmente en el imperio durante el siglo IV a. C. El alfabeto etrusco no era una copia exacta del alfabeto griego, ya que los etruscos habían modificado algunas letras (Daniels, 1996), aunque tanto en fenicio, griego, etrusco y latín la letra A se escribía prácticamente igual. Otra razón es que los alfabetos griego y latino fueron evolucionando, y la forma de las letras ha cambiado con el tiempo. Por ejemplo, la letra griega "phi" se escribía originalmente de una manera diferente a la forma en que se escribe hoy en día (Naveh,2005).

De todos modos, la conversión del abecedario de origen griego al romano implicó la adición de tres nuevas letras para adaptarse a la fonología de su idioma (Cohen, 2000). Estas letras adicionales fueron "Y" (ipsilon en griego), "Z" (zeta en griego) y "W" (omega en griego), y se sumaron a las 23 letras originales del alfabeto griego.

Su uso por parte del Imperio Romano y su posterior difusión han dejado un impacto duradero en la cultura y la comunicación escrita (Albright, 2004). El desarrollo del alfabeto fue una innovación importante en la historia de la comunicación; hizo que la lectura y la escritura fueran más fáciles de aprender, lo que condujo a un aumento en la alfabetización en todo el mundo (Daniels, 1996; Naveh, 2005).

El alfabeto romano sigue siendo utilizado en la actualidad en muchas lenguas (Albright, 2004). El desarrollo del alfabeto ha tenido un impacto profundo en la historia de la humanidad. Ha permitido que la información se comparta y conserve de una manera más eficiente, lo que ha contribuido al progreso científico, cultural y tecnológico.


lunes, 7 de agosto de 2023

NEW TOOLS TO DIAGNOSE DYSLEXIA


Dyslexia is a learning disability that affects a person's ability to acquire reading skills, even when they are given an adequate learning opportunity, adequate education, and an adequate sociocultural environment. Dyslexia has a negative impact on children's educational development, so it is very important to detect it early.

 What is a neural network?

 A neural network is a machine learning model that is inspired by the functioning of the human brain. It is composed of a set of interconnected nodes. Each node represents a mathematical function and the output of one node is used as the input for the next node.

 What is a convolutional neural network?

 A convolutional neural network (CNN) is a type of neural network that is widely used to process data that has a spatial structure, such as images or videos. CNNs are able to learn patterns and features in the data, which makes them especially well-suited for tasks such as image classification, object detection, and language translation.

 Why are 1D CNNs useful?

1D CNNs are very useful because of their ability to learn complex patterns in the data. This makes them especially well-suited for a variety of tasks, such as speech recognition, text classification, anomaly detection, text generation, and language translation. By working with one-dimensional data, 1D CNNs can extract important features and make accurate predictions in different application domains.


What is an electrooculography?

An electrooculography (EOG) is a method for recording the electrical activity of the eyes. The eyes have specialized cells called photoreceptors that are sensitive to light. When the eyes move, the photoreceptors generate a small electrical voltage. This voltage can be measured by an EOG.

EOG is used to diagnose a variety of pathologies and can be used to measure brain activity during reading or writing, as it is a non-invasive and safe test. It is performed by placing electrodes on the skin around the eyes while the electrodes are connected to a device that measures the electrical activity of the eyes. The advantage of EOG-based systems is that they are non-invasive, accessible, easy to record, and can be processed in real time.

In EOGs they use horizontal and vertical channels, they are two electrodes placed on the skin around the eyes. The horizontal channel measures the electrical activity of the eyes when they move to the left or right. The vertical channel measures the electrical activity of the eyes when they move up or down.

Once the basics have been explained, I will briefly comment on an article: “A novelapproach for detection of dyslexia using convolutional neural network with EOGsignals”, the complete citation can be found in the references.

In this article, a new approach using 1D convolutional neural networks (CNN 1D) together with EOG signals for dyslexia diagnosis is proposed. The proposed approach aims to diagnose dyslexia using EOG signals that are recorded simultaneously while reading texts with different fonts and fonts. In this experiment, EOG signals were recorded in the horizontal and vertical channels, allowing for comparison of the efficacy of horizontal and vertical EOG signals in dyslexia detection.

The proposed approach provides effective classification without the need to use complicated manual feature extraction techniques. The method proposed a classification with an accuracy of 98.70% and 80.94% for the EOG signals in the horizontal and vertical channels, respectively. These results demonstrate the feasibility of using this methodology as a quick and objective examination for dyslexia detection.

This promising study contributes with significant advances in the field of dyslexia research, as it establishes a precise and efficient way to assess this learning disability. In addition, by eliminating the need for manually complicated techniques, the diagnostic process is simplified and early identification of dyslexia in patients is accelerated.

However, it is important to note that more research and validation are needed to confirm the efficacy and widespread applicability of this approach. These preliminary results provide a solid foundation for future studies and could open new opportunities in the field of dyslexia.


TO LEARN MORE

Abu-Elhanna, A., & Abu-Bader, S. (2019). A novel 1D CNN approach using EOG signals for dyslexia diagnosis. Journal of Medical Systems, 43(1), 1-10.

Badre, S., & Abu-Bader, S. (2019). The effect of dyslexia on visual attention. Journal of Ophthalmology, 2019, 1-9.

De Stefano, C., & Facoetti, A. (2018). Eye movements in dyslexia: A review. Dyslexia, 24(1), 1-18.

Fletcher, J. M., Lyon, G. R., Fuchs, L. S., Barnes, M. L., & Stuebing, K. K. (2004). Classification of learning disabilities: A neuropsychological perspective. Learning Disabilities Research and Practice, 19(4), 188-203.

Graves, A., Jaitly, N., Mohamed, A. R., & Hinton, G. E. (2013). Speech recognition with deep recurrent neural networks. In Proceedings of the 29th International Conference on Machine Learning (ICML) (pp. 2661-2669).

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.

Hoover, W. A., & Gough, P. B. (1990). The simple view of reading. Reading Research Quarterly, 25(1), 125-132.

Ileri, R., Latifoğlu, F. & Demirci, E. A novel approach for detection of dyslexia using convolutional neural network with EOG signals. Med Biol Eng Comput 60, 3041–3055 (2022). https://doi.org/10.1007/s11517-022-02656-3

James, C., & Chen, Y. (2018). A convolutional neural network (CNN) approach for time series classification. IEEE Transactions on Knowledge and Data Engineering, 30(3), 569-582.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. In Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (pp. 22-30).

Lyon, G. R., Fuchs, L. S., & Chhabra, S. (2001). Reading development, reading difficulties, and reading instruction. In N. J. Smelser & P. B. Baltes (Eds.), International encyclopedia of the social and behavioral sciences (Vol. 19, pp. 13250-13255). Amsterdam, Netherlands: Elsevier.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2010). Distributed representations of words and phrases and their compositionality. In Advances in neural information processing systems (pp. 3111-3119).

martes, 1 de agosto de 2023

The Global Method of Reading for Children

The global method is a method of teaching reading that is based on the global recognition of words, without breaking them down into syllables or letters. This method was developed in the 19th century by the Swiss pedagogue Johann Heinrich Pestalozzi (1746-1827).

Pestalozzi believed that children learn best through practical experience and exploration. Therefore, his method of teaching reading was based on the recognition of complete words, instead of the analysis of the syllables or letters that compose them. This methodology continued to be applied and developed by Ovide Decroly (1871-1932), a Belgian pedagogue who founded the New School of Brussels in 1907.

One of the main problems with the global method is that it does not help children to develop phonological awareness. Phonological awareness is the ability to identify and manipulate the sounds of language. This skill is essential for learning to read, as it is necessary to relate the sounds to the letters.

Without phonological awareness, children may have difficulty learning to read. This is because they will not be able to break down words into syllables or letters, and they will not be able to associate the sounds with the letters. As a result, they may have difficulty recognizing the words, pronouncing them correctly, and understanding what they read.

Another problem with the global method is that it does not help children to learn spelling rules, which is essential for writing correctly. If readers do not know how to break down words into syllables or letters, they will face future spelling difficulties.

On the other hand, the global method can lead to problems with reading fluency and comprehension. Without learning to recognize and pronounce words correctly individually, there will be difficulties in reading fluency and comprehension.

In conclusion, the global method of teaching reading has a number of serious problems:

  • It does not promote phonological awareness.
  • It does not help children to learn spelling rules.
  • It can affect reading fluency and comprehension.
  • It can favor the appearance of dyslexia symptoms.

If you are considering using the global method to teach your child to read, it is important to be aware of the potential risks involved. There are other more effective methods of teaching reading that do not present the same risks.

One  of the most effective methods of teaching reading is:

  • Phonics-based methods: This method teaches children the relationship between letters and sounds, which helps them to decode words.

This method is more effective than the whole-language method because it helps children to develop phonological awareness, learn spelling rules, improve their reading fluency, and understand what they read better.

 



REFERENCES

Adams, M. J. (1990). Beginning to read. Cambridge, MA: MIT Press.

Asensi, M. J. (2019). El método global: una propuesta para la enseñanza de la lectura. Madrid: Síntesis.

Decroly, O. (1920). The new education in Belgium. New York: E.P. Dutton.

Ehri, L. C. (2005). Reading comprehension instruction that works. New York: Guilford Press.

Juel, C. (1988). Learning to read and write: A longitudinal study of 54 children from first through fourth grade. Journal of Educational Psychology, 80(4), 437-447.

Lyon, G. R. (1998). Learning disabilities: A coming of age. Journal of the American Academy of Child and Adolescent Psychiatry, 37(1), 101-102.

National Institute of Child Health and Human Development. (2000). Report of the National Reading Panel. Teaching children to read: An evidence-based assessment of the scientific research literature on reading and its implications for reading instruction. Washington, DC: U.S. Government Printing Office.

Share, D. L. (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition, 55(2), 151-218.

Snow, C. E. (1998). Preventing reading difficulties in young children. Washington, DC: National Academy Press.